
1 

 

 

Functional hyperspectral imaging captures subtle details of cell metabolism in olfactory 

neurosphere cells, disease –specific models of neuronal disorders 

 

Martin E. Gosnell
1,3

, Ayad G. Anwer
1
, Juan C. Cassano

2
, Carolyn M. Sue

2
 and Ewa M. Goldys

1*
 

1
ARC Centre of Excellence in Nanoscale BioPhotonics, Macquarie University, Sydney, 2109, New South 

Wales, Australia. 

2
Department of Neurogenetics, Kolling Institute, Royal North Shore Hospital/Northern Clinical School, 

University of Sydney, New South Wales, Australia. 

3
 Quantitative Pty Ltd, ABN 17 165 684 186, www.quantitative.net.au, tel. +614 22 498 630 

*Corresponding author ewa.goldys@mq.edu.au 

Abstract 

Hyperspectral imaging uses spectral and spatial image information for target detection and 

classification. In this work hyperspectral autofluorescence imaging was applied to olfactory 

neurosphere-derived cells as a human metabolic disease cell model of MELAS (mitochondrial 

myopathy, encephalomyopathy, lactic acidosis, stroke-like syndrome). By using endogenous source 

of contrast we have been able to detect subtle metabolic variations between living cells in their full 

morphological context and differentiate healthy from diseased cells before and after therapy. 

Cellular maps of native fluorophores, flavins, bound and free NADH and retinoids unveiled subtle 

metabolic signatures and helped uncover medically significant cell subpopulations, in particular a 

subpopulation with simultaneous low bound NADH, high free NADH and high lipofuscin content. 

Taken together, our results demonstrate that hyperspectral imaging provides a new method to 

investigate neuronal and other diseases, and it paves the way for novel diagnostics and monitoring of therapies 

with proper account of intrinsic cellular heterogeneity.  

Introduction 

Olfactory neurosphere (ONS) cells are easily accessible, patient-derived models of neurological 

disease [1]. They are harvested from the human olfactory mucosa, the organ of smell in the nose, 

which regenerates throughout life. This neural tissue is accessible in human adults and it 

demonstrates disease-dependent cell biology alterations for example in Alzheimer’s and 

Parkinson’s disease, Rett syndrome, fragile X syndrome, schizophrenia, MELAS and others [2-8]. 

The analysis of such cells provides new routes for the understanding the pathogenesis of complex 

neuronal diseases. As neurons exhibit intense metabolic demands, the impairment of cellular 

metabolism is frequent in many neurodegenerative diseases. Thus new methods are required to 

characterise and quantify metabolism on a single cell level. Such methods are important for more 

accurate early diagnosis, treatment monitoring or the development of therapies, especially that some 

fragile cells such as, for example motor neurones can not be analysed by conventional methods such 

as flow cytometry. 

 

Monitoring of endogenous cell fluorophores including nicotinamide adenine dinucleotide (NADH), 

nicotinamide adenine dinucleotide phosphate (NADPH), flavin adenine dinucleotide (FAD) and 

flavin mononucleotide (FMD) to investigate cell metabolism has been pioneered by Chance and his 

group [9]. By using optical microscopy techniques, these compounds can be easily observed 
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providing insights into metabolic activity in cells without altering them with exogenous labels [10-

27]. Multiphoton and fluorescence lifetime imaging microscopy (FLIM) have been the leading 

methods of cellular autofluorescence imaging with pioneering works by Skala et al. [10-12], 

Gratton’s group [15-20], and others. Multiphoton and FLIM imaging makes it possible to determine 

the relative amounts of FAD and reduced NADH and to distinguish their free and protein-bound 

forms. This has been used to document increased glycolysis in cancer cells [10-13]. Although 

quantitative analysis of autofluorescence has been previously explored in multiphoton and FLIM 

modalities, there has been no previous in-depth work concerned with single photon excited 

fluorescence. This simple approach provides clinically important information, and it can be carried 

out by using unsophisticated, low cost instrumentation.   

 

Here we report the application of hyperspectral autofluorescence analysis to functional, metabolic 

imaging of olfactory neurosphere-derived cells from patients suffering from mitochondrial disease, 

commonly attributed to the m.3243A>G mitochondrial DNA (mtDNA) point mutation [28-31]. 

This mitochondrial disease is referred to as MELAS syndrome and its severity is indicated by the 

percentage of mutated genes (see Sup. Mat. for more details). It is thought that mutations within the 

MT-TL1 gene such as m.3243A>G can disrupt mitochondrial function, impair mitochondrial protein 

synthesis [28], reduce mitochondrial respiratory chain enzyme activities [29] and ultimately reduce 

the ATP production [32]. Mitochondrial parameters are subsequently affected, with studies 

reporting reduced mitochondrial membrane potential, with a parallel increase in reactive oxygen 

species production leading to reduced ATP production and induction of mitochondrial permeability 

[29]. Cellular damage is apparent too, with increased glycolytic rate, impaired NADH response, 

decreased glucose oxidation and increased lactate production [31]. The defective oxidative 

metabolism, may also influence clinical expression of disease. For example, neurons and myocytes 

are greatly affected by mtDNA mutations, as they are highly metabolic cells. A further feature of 

the MELAS syndrome is the phenomenon of ‘heteroplasmy’, where cells differ in their proportion 

of mutant versus wild-type mtDNA. Thus the analysis method that is able to yield quantitative 

insights concerning metabolism of individual live cells as well as their populations is a valuable tool 

to improve the understanding of this disease. This work shows that a simple hyperspectral imaging 

system coupled to a conventional wide-field microscope and high content analysis of the images 

provide novel insights into cell metabolic signatures, their heterogeneity and MELAS disease 

biology. 

Throughout this work, hyperspectral autofluorescence images of live cells have been obtained at a 

number of excitation wavelength ranges between 334 and 495 nm (each 10 nm wide). The emission 

is detected in the range 550 nm- 600 nm. See Supplementary Material S1-S4 for a full description 

of methods. 

 Results  

Hyperspectral imaging can distinguish MELAS patients from healthy controls and confirms 

the effectiveness of galactose treatment 

First we show the results of our characterisation of olfactory neurosphere cells with high and lower 

mutant loads of the m.3243A>G  mutation (“MELAS cells”) and control cells. Average cell spectra 

(represented by single data points) have been plotted in a two-dimensional spectral space produced 
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by linear discriminant analysis (LDA, see Sup. Mat. S1) to optimally separate the three groups of 

cells: healthy cells from both controls, 11% mutant MELAS and 44% mutant MELAS cells. 

 
 

Fig. 1. Healthy, 11% and 44% MELAS and 11% and 44% MELAS treated cells form statistically 

separate clusters with respect to autofluorescence properties. a) Scatterplot of average cell spectra 

in optimised spectral space. Symbols represent average cell spectra for each cell, the colour of 

these small symbols identifies patients. Green circles: healthy control cells for 11%, red crosses: 

healthy controls for 44%; cyan circles: 11%, blue crosses: 11% treated; blue circles:  44%; blue 

crosses: 44% treated cells. Large symbols- mean values for each cell classes, ovals - regions within 

the single standard deviation from the b-g) histograms (Parzen estimates, see Sup. Mat. S4) of the 

selected pairs of cell classes. Numbers in brackets give statistical distance.  b) 11%- blue, healthy-

red (1.87); c) 44%-blue, healthy-red (1.98); d) 11% -blue, 11% treated-red (1.05); c) 44%-blue, 

44% treated-red (8.89); d) 11%treated-blue, healthy-red (1.17); e) 44% treated-blue, healthy-red 

(1.42). 

Clear separation of clusters in Fig. 1 a confirms that the cells from MELAS patients can be 

distinguished from healthy cells. Moreover, cells from two different patients also form different 

clusters, thus all three cell classes are well separated. To statistically analyse the cluster separations, 

we carried out a second LDA projection of our data. For this new projection, two classes of cells 

were chosen at a time, and their average spectra were projected onto a common line. This approach 

visualises cell distributions by histograms (Fig. 1 b, c) and provides statistical distance (Sup.Table 

1). The Kolmogorov-Smirnov test of the hypothesis that every two classes selected among all three 

(healthy, MELAS, treated) come from the same distribution gave p-values of less than 10
-12

, 

consistently with Fig. 1 a.  

The analysis of the cells that have undergone galactose treatment to reduce the mutational load is 

shown in Fig. 1 a. The treated cell group moves away from MELAS cells and noticeably approach 

the healthy cells region. Pairwise LDA projections produced histograms shown in Fig 1 d-g which 

are also well separated (See Sup. Table 1 for statistical distances). Overall, our results indicate that 

cells exposed to galactose are brought closer to healthy control cells compared to MELAS cells. 

Thus our method can not only distinguish MELAS on a cellular level but also quantify the response 

of such cells to pharmacological interventions. 
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Mapping of key fluorophores in cells 

In order to shed light on cell biochemistry we decomposed the spectral images of the cells under 

investigation into five most significant spectral components representing the most prominent 

fluorophore groups. This analysis uses an unsupervised unmixing approach (see Methods). The 

resulting component (endmember) spectra are shown in Fig. 2 a-e (44% MELAS) and Sup. Fig. S1 

a-e (11% MELAS) where they are found to correspond to the spectra of bound flavin, FAD, A2E, 

bound NADH, free NADH, flavins and lipofuscin, the most abundant cellular fluorophores 

according to the literature [15]. All groups of cells had significant contributions of free and bound 

NADH as well as A2E and lipofuscin. The fifth spectral component was different in the two 

examined cases: FAD in 11% MELAS (and 11% treated and control cells) and bound flavins in 

44% MELAS (and 44% MELAS treated and controls). 

To lend further support to our assignment we carried out colocalisation analysis of autofluorescence 

endmembers with organelle stained images. (Sup. Figs S2, S3, S4). Here, an adaptive algorithm has 

been used to correct for the cell motion. The image correlations between the endmembers and 

individual stains are displayed in Sup. Fig. S4. We confirmed (a) high degree of colocalisation 

between flavins and stained mitochondria; (b) the absence of colocalisation between free NADH 

bound NADH (correlation of 0.17); (c) strong colocalisation of bound NADH and the mitochondria, 

with correlation values r between 0.62 and 0.9); and (d) co-localisation of retinoids with the 

liposomes and the mitochondria.  

 

Finally, we checked that that the fluorescence of the identified fluorophores appropriately responds 

to chemical quenching. To this aim we applied several known fluorescence quenchers including (a) 

sodium borohydride which reduces free NAD
+
 to fluorescent NADH and reduces fluorescent 

flavins thus quenching their fluorescence; (b) acrylamide which quenches flavins;(c) FCCP [33] and 

rotenone [34] (specific to NADH) and confirmed their quenching effect on the fluorescence 

intensity (see Sup. Fig. S5). 
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Fig.2 a-e: Comparison of the spectra of five key fluorophores (red) in 44% MELAS cells with 

endmembers identified in our images by unsupervised unmixing (black). Our endmembers agree 

well with (a) bound flavins, (b) A2E, (c) bound NADH, (d) free NADH and (e) lipofuscin. Below we 

show images of cells showing the abundance of the five key fluorophores in healthy control (top 

row: f-j), 44% MELAS (middle row: k-o) and 44% MELAS treated patient (bottom row: p-t). 

Columns from left to right: f,k,p – bound flavins; g,l,q- A2E; h,m,r- bound NADH; i,n,s -free 

NADH; j,o,t - lipofuscin. The outlines of cells have been marked for clarity. The colour scale 

reflects fluorophore abundance. 

Our approach produced cellular maps of each of the five key fluorophore groups within the 

examined cells. These are shown in Fig. 2 f-t where we present the results for the 44% MELAS 

patient before and after galactose treatment and the controls (see Sup. Fig. S1 f-t for 11% MELAS). 

The average cell intensities in Fig. 2 f-t show clear trends, also statistically confirmed in all cells by 

boxplots (Sup. Fig. S6). For example, the flavin content is low in healthy cells, high in 44% 

MELAS and it returns to almost healthy levels after treatment. The bound NADH content is high in 

healthy cells, low in MELAS and it increases after treatment, while the opposite is true for free 

NADH. The fluorescence levels of retinoids are higher in healthy and MELAS treated cells, but 

lower in MELAS cells.  Sup. Fig. S1 f shows that flavins in healthy cells are mostly located outside 

of the nuclear region. In MELAS cells (Fig. 2 k and Sup. Fig. S1 k) they are highly concentrated in 
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filamentous structures surrounding the nucleus and they are also found in the nucleus, but with a 

smaller density. The galactose treatment brings down the average flavins contribution and they can 

be seen mostly outside of the nucleus, similarly to the “healthy” distribution (Sup. Fig. S1 p).  

Bound NADH is comparatively less abundant in MELAS than in healthy cells (Fig. 2 h, m  and Fig. 

S 1 h, m ) and it is absent in the nuclear region of MELAS cells. Retinoids in healthy cells (Fig. 2 

g,j) and Fig. S1 g,j) form perinuclear rings consistent with their mitochondrial localisation [14, 35] 

with some contribution from the lysosomes as well. Our colocalisation analysis of different 

endmembers was also consistent with the assignment of the fluorophore groups observed in this 

study (see Sup. Fig. S7 and Supplementary Discussion).  

Metabolic imaging 

Further, we obtained the optical redox ratio, defined as the ratio of fluorescence signals from flavins 

to flavins and/or NAD(P)H extensively used in the literature as a measure of the oxidation/reduction 

status in a cell which is sensitive (inversely related) to the cellular metabolic rate [11, 12, 36, 37]. 

This approach is based on the observation that mitochondrially localized NAD(P)H [34, 35] and 

flavins (LipDH and ETF) are directly linked to cellular metabolic activity. [38].  

 

Fig. 3. Metabolic imaging of cells. The end member abundance images are divided to produce ratio 

images. All values undergo the log (base 2) transform (see colour scale). Left panel (a-i) – 11% 

MELAS, right panel: (j-s) – 44% MELAS. Top row: healthy, middle row: MELAS, bottom row: 

MELAS treated. (a,d,g) – ratio of FAD to bound NADH.  (b,e,h): ratio of FAD to free NADH, 

(c,f,i): ratio of bound to free NADH, a measure of balance between glycolysis vs oxidative 

phosphorylation; (j,m,q): ratio of flavins to bound NADH. (k,n,r): ratio of flavins to free NADH, 

(l,p,s): ratio of bound to free NADH.  

The optical redox ratios in the examined cells are presented in Fig. 3. We show that MELAS cells 

have a much higher optical redox ratio than the control healthy cells, consistent with their impaired 

metabolic activity which is largely, but not completely restored by the galactose treatment.  We also 

present the cell images displaying the ratio of bound to free NADH (Fig 3 c, f, i, l, p, s). These 

confirm that the MELAS cells show lower levels of bound/free NADH (hence enhanced glycolysis) 

compared with the normal cells where the bound NADH signal from oxidative phosphorylation is 

stronger. A more detailed statistical analysis for the whole ensemble of cells within the sequence 

healthy-MELAS-MELAS treated is shown in Sup. Fig. S6 confirming similar trends.  
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Identification of cell subpopulations 

We used our automated algorithm described in Methods to search for cell subpopulations by 

looking for clustering of fluorophore abundances illustrated in Fig. 4 a-r with statistical analysis  

before and after galactose treatment shown in Sup. Fig. S8. 

  

 

Fig. 4. Scatterplots showing the most pronounced correlations between fluorophore abundances in 

cells and cell subpopulations (a-i) 11% MELAS,(j-r)- 44% MELAS. Fluorophores are indicated on 

the axes. The colour scale in plots with grey background indicates the abundance of the third 

fluorophore. All plots presented here have the best mixture model value which is greater than unity. 

In order to obtain the plots shown here, all combinations of features have been tested and scored in 

terms of how well they clustered into any of the shaded regions, indicating subpopulation 

coincidence. This was done for all features shown to have definite 1D sub populations. Such 

multidimensional analysis provides a more detailed view of sub-populations and it makes it possible 

to detect new sub-populations showing covariances which otherwise could remain hidden. In 

particular we draw attention to completely separated and almost even two subpopulations in Fig 4 r 

for 44% MELAS (green and blue) and two uneven well-separated subpopulations (red and blue) for 

11% MELAS (Fig. 4 i). We also draw attention to the behaviour of the optical redox ratio (flavins: 

bound NADH, (Sup. Fig. S8) showing clear subpopulations in the MELAS patients. These 
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subpopulations later disappear after galactose treatment. The ratio of free NADH/bound NADH 

which is a relative measure of glycolysis and several other features also show clear subpopulations 

(Sup. Fig. S8). 

Comparison with biochemical characterisation 

Sup. Fig. S9 summarises the results of biochemical characterisation of the examined cell groups. It 

shows that the biochemistry of MELAS cells is significantly altered compared to healthy controls. 

For example the ATP production and MTMP are clearly lower than healthy, while the levels of 

lactate and SOX are clearly elevated. These values return closer to healthy levels after treatment. 

Discussion 

Originally developed for remote sensing, this work expands the hyperspectral approach to the fields 

of medicine and cell biology in areas utilising fluorescence microscopy. It yields quantitative and 

straightforward interpretation of physiological processes in living tissues similar to multiphoton 

fluorescence and/or FLIM but without the complexity and cost of a multiphoton FLIM imaging 

system. The use of single photon fluorescence at comparatively low excitation irradiances (in the 

order of 10
3
 W/cm

2
) from light emitting diodes is also an advantage. We have shown here that the 

hyperspectral approach combined with high content data mining of cell images provides novel 

insights into the MELAS disease which is characterised by genetically determined mitochondrial 

dysfunction. Olfactory neurosphere cells investigated here are disease–specific models of neuronal 

disorders [1], thus our work offers new ways of understanding these and a broad range of other 

diseases affecting metabolism. 

 

By using our hyperspectral analysis to differentiate cell groups we were able to statistically 

establish that MELAS cells differ from healthy cells, confirming high sensitivity of the method 

(Fig. 1); such certainty is impossible to gain from the biochemistry data alone for these patients. 

Even more importantly, we have been able to distinguish cells from each MELAS patient before 

and after treatment and demonstrate that they are now more similar to the healthy cells than before 

treatment. The method produces p-values for the hypothesis that the two cell groups are different. 

Our method is also robust with respect to reproducibility and the same results have been obtained in 

repetitive cell experiments from different cell passages four months apart period. These results 

show that hyperspectral analysis is sensitive enough to monitor functional treatment response of 

cells from single individuals.  

Unlike in other works ([14]) our spectra have sufficient spectral resolution to differentiate between 

unbound and protein-bound forms of NADH, whose spectrum is blue-shifted by 20 nm compared to 

free NADH [39, 40]. However we are unable to differentiate between NADH and NADPH, thus the 

NADH components in this work (free or bound) represents both NADH and NADPH fluorescence 

[26]. The flavins component represents the majority of the cellular flavins fluorescence produced by 

the mitochondrial lipoamide dehydrogenase (LipDH) and electron transfer flavoprotein (ETF), but 

also flavins generated in cytosol. The shape of the flavins excitation spectrum is similar to that 

of aqueous flavins with a red shift by 50 nm by the effect of protein binding [33,41-43]. We have 

been able to separately identify FAD [14]. In the retinoid group, the A2E has also been separately 

identified, while the spectrally similar retinoids [44,45] including retinol, retinoic acid as well as 
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cellular retinol-binding proteins (CRBPs) and cellular retinoic acid-binding proteins (CRABPs) 

which carry retinoids within cells have been merged with lipofuscin.  

We also carried out a detailed colocalisation analysis (Sup. Fig. S7) of the fluorescent components 

presented in Fig. 2 and Sup. Fig. S1.  In order to validate our assignments we only focussed on 

healthy cells (Sup. Fig. S7). We found that (a) free and bound NADH do not colocalise, in 

agreement with their cellular localisation in the mitochondria and cytosol, respectively; (b) flavins 

colocalise with bound NADH; this is because they are both localised in the mitochondria, however 

there are also uncolocalised cytosolic flavins as expected [46]; (c) lipofuscin located in the 

lysosomes does not colocalise with bound NADH in the mitochondria. All these colocalisations are 

in agreement with the established knowledge about the behaviour of these fluorophore groups in 

cells.  In Supplementary Discussion we analyse trends in fluorophore content and their ratios 

between healthy, MELAS and treated cells in comparison with traditional biochemistry. 

Our results indicate that the cells in the 44% mutant MELAS cells show a comparatively lower 

level of metabolic activity than the control and that the redox ratio is restored to the near-healthy 

level by galactose treatment. This is consistent with our biochemistry results which show that ATP 

production was reduced in MELAS compared to both healthy and MELAS treated cells (Fig. S9). 

We also found that the free to bound NADH ratio varied significantly; it was low in healthy 

controls, increased considerably in MELAS but it returned back to almost normal after galactose 

treatment (Sup. Fig. S6 b). The ratio of bound to free NADH has biological significance, because 

oxidative phosphorylation in the mitochondria predominantly (in 80%) produces protein-bound 

NADH [21, 47] while glycolysis produces free NADH in the cytosol [48]. Thus the ratio of bound 

to free NADH reflects the balance between glycolysis and oxidative phosphorylation. The 

inspection of Sup. Fig. S6 b indicates that in 44% MELAS cells the bound to free NADH ratio was 

lower than in the matched control. Such increased glycolysis and/or decreased oxidative 

phosphorylation in MELAS cells compared to healthy controls is indicative of the switch of the 

higher mutant MELAS cells to alternative bioenergetic pathways to supply ATP in the absence of 

sufficient oxidative phosphorylation, even though glycolysis produces less ATP from the same 

amount of glucose. This is also demonstrated by the apparent increased lactic acid, a by-product of 

glycolysis but not of oxidative phosphorylation (Sup. Fig. S9). Overall, our results indicate that 

hyperspectral imaging reflects the metabolic function in vivo in individual cells, and it can detect 

metabolic activity through the optical redox ratio and the balance of glycolysis and oxidative 

phosphorylation. We have shown that it can help assess the disease status and the effect of therapies 

in olfactory neuronal cells, which serve as models for a variety of neurodegenerative diseases. 

Using this method it will be possible to analyse impairment of the metabolic function in these 

diseases as well as monitor neuronal activity in vivo [27] once the ONS cells are differentiated into 

functioning neurons. 

The existence of cell subpopulations with respect to the identified fluorophore groups is shown in 

Sup. Fig. S8. For example we observe that healthy cells display a single population only with 

respect to flavins content, while 44% MELAS cells show two distinctive and separate 

subpopulations. After galactose treatment the average flavins level decreases but the two 

subpopulations are still apparent. The subpopulations are also clearly pronounced for both bound 

and free NADH and this may be related to progress some of the cells have inadvertently made along 

the differentiation pathways; we have independently checked that hyperspectral imaging is indeed 

capable to detect such early differentiation in stem cells. Finally, our healthy cells constituted a 
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single population with respect to the retinoids’ content, but clear subpopulations are observed in 

MELAS and MELAS treated cells. Sup. Fig. S8 shows a similar analysis for fluorophore ratios, 

again displaying clear subpopulations in most cases. These subpopulations are particularly 

pronounced in MELAS cells for flavins to bound NADH and retinoids to bound NADH ratios. 

These subpopulations are associated with varying levels of metabolic activity and glycolysis. 

Specific subpopulations visualised in Fig. 4 and Sup. Fig. S8 are analysed in Supplementary 

Discussion. These results indicate that MELAS cells in this patient belong to two distinctive 

classes, which we tentatively identify as “healthy” (green) and “mutated” (blue).  Thus our data 

support the hypothesis that MELAS is a disease which affects cells to a different degree as opposed 

to the alternative that all cells are similar and characterised by a certain proportion of defective 

mitochondria in each. Distinguishing between these two hypotheses is significant for the design of 

patients’ treatment regimens. 

 

METHODS (ONLINE) 

Details of biological experiments  

In this study we used cells from the MELAS patient-derived olfactory-derived neurospheres (ONS) 

with varying levels of mutational load (11% and 44%) generated from olfactory primary cultures. 

To prepare these ONS, nasal biopsies were carried out and harvested cells were expanded and 

subcultured as described in more details in Sup. Mat. S1. Cells from healthy control subjects were 

harvested and treated in the same fashion. The MELAS cells were subjected to galactose- 

supplemented, glucose-free media (starvation) over a period of 4 days. We present data from three 

different cell passages. Imaging was carried out on cells having an approximately constant cell 

density. Each cell sample was prepared and imaged in duplicate. Altogether, over 1500 cells were 

imaged in this study. 

Cells were carefully characterised biologically by a variety of methods. In particular we measured 

mutational load by standard radiolabelled (“hot-finish”) PCR/RFLP analysis, carried out the citrate 

synthase assay for the determination of mitochondrial mass, measured the level of lactate, ATP, 

mitochondrial superoxide generation (SOX), mitochondrial transmembrane potential by flow 

cytometry. All cells were also imaged by laser scanning microscopy, with Green Mitotracker, Red 

Lysotracker and Blue Er-Tracker staining. (see Sup. Mat. S2 for more details) 

Hyperspectral measurements technique 

Our method uses fluorescence of native fluorophores commonly found in cells. In our approach the 

images of live cells are obtained by an Andor IXON camera under illumination at a number of 

selected bands of excitation wavelengths (here, centred at 334, 365, 385, 395, 405, 415, 425, 435, 

455, 475, 495 nm, each about 10 nm wide). The emission is measured in the range 550 nm- 600 nm. 

These measurements yield fluorescence excitation spectra measured at each pixel for all images of 

cells coming from all patients. These spectra are further corrected for instrumental response. A 

“background” reference image of a culture dish with a medium is also taken and subtracted from all 

images with cells.  

Description of data analysis method for differentiation of cell groups: 
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The original pixel spectra containing intensity and wavelength information are represented as 

vectors in an n-dimensional spectral space whose coordinates are intensities at each of the n 

excitation wavelength (here, n=11). This dataset contains significant correlations, as cell images at 

adjacent wavelengths are very similar; this is first removed by using a covariance matrix calculated 

from the data. (see Sup. Mat. S4 for mathematical details). Further, we calculate average cell 

spectra. The method of Linear Discriminant Analysis (LDA) [49] is then employed, in order to 

establish whether these average spectra from biologically identifiable classes of cells form well 

separated clusters.  In this method we first choose the m cell classes and by using LDA we project 

the original n-dimensional spectral space and the data points representing the average spectra of our 

cells onto a new, lower-dimensional space. Its dimension is given by the number of groups of cells 

classes to be distinguished less 1.  For convenience of presentation, in this work we have been using 

three classes of cells, so that after LDA the spectra of these cells can be depicted as points on two 

dimensional plots. This two-dimensional spectral space produced by LDA is referred to as the 

“canonical spectral space”. Its basis vectors are orthogonal, and aligned with the axes in our 

relevant figures.  

The LDA method ensures that the new space is optimised to provide the best degree of separation 

between selected cell classes (such as, for example, cells from different patients). Finally, to 

quantify the distinctiveness between selected pairs of cell clusters we perform the LDA analysis 

again, on each pair of cell cluster data projecting them onto a one-dimensional line.  The 

Kolmogorov-Smirnov statistical test is then applied to gauge and compare the similarity of the pair 

of clusters. We also calculate the maximum Fisher statistical distance, a measure of cluster 

closeness which is sensitive to cluster means and takes account of the data dispersion. 

We add that the data for additional cells and/or patients or data produced by other authors may be 

plotted together with our data. Although there is no mathematical certainty that optimum separation 

will be achieved for such blended datasets, a clear separation may often be achieved in the case 

when class distinction results are statistically strong with small p-values. 

Description of data analysis method to determine fluorophore abundance 

We are assuming that the observed spectra are a linear combination of fundamental spectra 

originating from particular substances, called end members. These N number of endmember spectra 

X are weighted by an abundance coefficient vector f such that an observed spectrum    which is 

given by equation (1): 

           
 
                          (1) 

where e is the residual, or noise, not explained by the mixture of end members. 

The problem of finding the endmembers has a simple geometrical interpretation. The spectra of all 

individual pixels in cells represent a certain cluster in an N dimensional space. The cluster is 

contained within a convex hull called a simplex and each pixel spectrum point within this simplex 

represent a linear combination of the spectra represented by the extreme points (vertices) of that 

simplex. These vertex spectra are chosen to be end members.  

In order to find the best simplex representing the data points two conditions need to be satisfied: 

that the coefficients of the abundance vector are all positive and that they add up to unity. To 
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identify that best simplex we minimised the least squares error between the targets spectra and the 

product of our abundance vector multiplied by the end member spectra, for the entire set of data.. 

The corresponding endmembers spectra are shown in Fig. 2 and Sup. Fig. S1. Fit errors are 

typically being between 5-10%, due to the presence of other less abundant and unidentified residue 

spectra.  

Description of data analysis method to detect cell subpopulations 

In order to characterise subpopulations in the examined cells we first specify K, the number of 

subpopulations we wish to find in each data group (K=2 in the presented analysis). Then for all 

groups within all variables, the data undergo an unsupervised mixture model. The non-deterministic 

algorithm is used to break the data into potential subpopulations. Each produced solution goes 

through selection criteria so that only the highest scoring solution per data group is selected. The 

criteria are that each of the subpopulations must be  > 30% of the whole dataset, the subpopulations 

must have a statistical separation greater than, 1 and they must pass a Kolomogorov-Smirnov test 

with P<0.05. The mixture model returns only the subpopulation means and covariance, so in order 

to classify the data points in one of the K subpopulations we used a Naive Bayes classifier. The 

method reproducibly finds subpopulations that agree with intuition when looking at the histograms. 

Boxplots are used to give an overview of data and a visualisation has been created to display groups 

of data with subpopulations. The width of the subpopulation boxes is proportional to their size, to 

allow some inference power across groups. 
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